Call for a FREE Quote Today!
Signed in as:
filler@godaddy.com
Concrete is so integral to our communities because it is the only building material that cost-effectively delivers:
It is quite simply the most versatile building material on earth. Here are more details:
Concrete’s unparalleled durability, energy efficiency and complete recyclability, combined with industry innovations such as lower carbon Portland-limestone cement, also known as Contempra, carbonated concrete or concrete cured with CO2 rather than water, all contribute to making it the lowest carbon building material over the lifecycle of a structure or pavement. Now, a new study by Canada’s renowned International Institute for Sustainable Development finds that up to 72% of the carbon emissions from wood products may currently be omitted from wood LCAs and that when these emissions are taken into account, concrete’s embodied carbon footprint could be up to 6% less intensive than that of wood products.
Concrete lasts decades longer than alternative building materials, and actually gets stronger over time. This reduces the total cost of ownership as well as the environmental impact associated with more frequent rehabilitation or reconstruction.
Concrete doesn’t burn, rust, or rot. It is resistant to fire, wind, water, vibrations, and earthquakes, keeping people safer and reducing costs. In the aftermath of extreme weather events, concrete structures have proven to be the most resilient.
Concrete Buildings - Concrete’s ability to store energy (its thermal mass) helps moderate interior temperature conditions, reducing a building’s heating and cooling demands over its service life by up to 8%. Used in combination with technologies such as radiant floors and geothermal or hydronic heating and cooling systems, concrete enables energy efficiency improvements of 70% over the Model National Energy Code for Buildings. And it improves a building’ “passive survivability” in the event services such as power, heating fuel, or water are lost — increasing comfort for occupants and minimizing energy demands for the city as a whole.
Concrete Pavements are also energy-efficient in several ways. Studies
show that over a 50-year period, the embodied primary energy required to construct, maintain, and rehabilitate concrete pavement is one third of that required for asphalt pavement. The rigid surface of concrete pavements helps reduce fuel consumption and related energy emissions by heavy trucks and other vehicles by up to 7%. And their light color helps reduce the heat-island effect — which lowers cooling requirements — while also reducing exterior lighting requirements at night by up to 24%.
A totally inert substance when cured, concrete is literally emission-free and will not emit any gas, toxic compounds or volatile organic compounds.
While strong and functional when hardened, concrete’s plasticity when freshly mixed lets designers adapt it to whatever form, shape, surface, and texture they can imagine. Innovations such as ultra-high performance concrete (UHPC), photocatalytic concrete and pervious concrete are also enabling new and creative uses — and new ways to address a host of sustainability challenges.
Because of concrete’s strength, sound attenuation, and fire resistance, concrete buildings can easily be converted to other occupancy types during their service life. Reusing buildings in this way can help limit urban sprawl and further contributes to the conservation of our resources and preservation of the environment.
Thanks to their durability, resilience, low maintenance requirements and energy efficiency, concrete structures reduce operating costs related to operational energy consumption, maintenance, and rebuilding following disasters. Insurance costs for concrete buildings during the construction and operating phases have also been shown to be significantly lower than for buildings constructed with combustible, moisture-sensitive materials.
Concrete pavements are also cost-effective on a first cost and lifecycle cost basis, requiring only a third of the maintenance a comparable asphalt road would require over a 50-year service life.
Concrete can be recycled as aggregate — for use as sub-base material in roadbeds and parking lots, for gabion walls, as riprap to protect shorelines or in other applications — or as granular material, thereby reducing the amount of material that is landfilled and the need for virgin materials in new construction.
Concrete is typically manufactured within 160 kilometers of a project site, using local resources. This greatly minimizes shipping and pollution and makes a significant contribution to the local economy.
“The Benefits of Concrete” Rediscover Concrete, 18 Nov. 2020, http://rediscoverconcrete.com/en/sustainability/a-better-building-material/the-benefits-of-concrete.html.
Interested in learning how the process works, and what we have to offer? Push the button below and send us a message!
As a company dedicated to providing premier customer service, it is important to us to deliver unparalleled workmanship on every assignment. We are accredited, licensed, bonded, and insured. With our experience and expertise, we can provide the support your project needs.
We will work with you to meet deadlines and coordinate with other related projects. We will maintain open communication with you to keep you up to date on the status of your job. We do this to guarantee that the project is completed according to your preferences.
We combine our industry knowledge, the highest quality building supplies and equipment, and our dedication to deliver exceptional service to our clients. We will stay in touch, keeping you up to date on both the paperwork and renovation process.
Copyright © 2021 Anderson Concrete LLC - All Rights Reserved.
Licensed: ANDERCL804PG